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in a concise way.
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Communities?
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COMMUNITY DETECTION

One of the best known methods of this kind is 
Newman & Girvan’s [PRE 69, 026113 (2004)]:

1) calculate betweenness for all edges
2) remove highest betweenness edge
3) recalculate betweenness for all edges and go to 2)

This fragments the network and thus gives rise to a 
series of partitions. 



One then chooses the optimal partition by maximising 
modularity, which is defined as:

where      is the fraction of network edges within 
partition  , and     is the fraction of edges connecting to 
partition  .
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A. Tests on computer-generated networks

First, as a controlled test of how well our algorithms per-
form, we have generated networks with known community
structure, to see if the algorithms can recognize and extract
this structure.
We have generated a large number of graphs with n

!128 vertices, divided into four communities of 32 vertices
each. Edges were placed independently at random between
vertex pairs with probability p in for an edge to fall between
vertices in the same community and pout to fall between ver-
tices in different communities. The values of p in and pout
were chosen to make the expected degree of each vertex
equal to 16. In Fig. 6, we show a typical dendrogram from
the analysis of such a graph using the shortest-path between-
ness version of our algorithm. !In fact, for the sake of clarity,
the figure is for a 64-node version of the graph." Results for
the random-walk version are similar. At the right of the fig-
ure we also show the modularity, Eq. !5", for the same cal-
culation, plotted as a function of position in the dendrogram.
That is, the plot is aligned with the dendrogram so that one
can read off modularity values for different divisions of the
network directly. As we can see, the modularity has a single
clear peak at the point where the network breaks into four
communities, as we would expect. The peak value is around
0.5, which is typical.
In Fig. 7, we show the fraction of vertices in our

computer-generated network sample classified correctly into
the four communities by our algorithms, as a function of the
mean number zout of edges from each vertex to vertices in
other communities. As the figure shows, both the shortest-
path and random-walk versions of the algorithm perform ex-
cellently, with more than 90% of all vertices classified cor-
rectly from zout!0 all the way to around zout!6. Only for
zout"6 does the classification begin to deteriorate markedly.
In other words, our algorithm correctly identifies the com-
munity structure in the network almost all the way to the
point zout!8 at which each vertex has on average the same

number of connections to vertices outside its community as it
does to those inside.
The shortest-path version of the algorithm does, however,

perform noticeably better than the random-walk version, es-
pecially for the more difficult cases where zout is large. Given
that the random-walk algorithm is also more computationally
demanding, there seems little reason to use it rather than the
shortest-path algorithm, and hence, as discussed previously,
we recommend the latter for most applications. !To be fair,
the random-walk algorithm does slightly outperform the
shortest-path algorithm in the example addressed in the fol-
lowing section, although, being only a single case, it is hard

FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text
with, in this case, z in!6 and zout!2. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the
modularity !dotted line" corresponds to a perfect identification of the communities.

FIG. 7. The fraction of vertices correctly identified by our algo-
rithms in the computer-generated graphs described in the text. The
two curves show results for the shortest-path !circles" and random-
walk !squares" versions of the algorithm as a function of the num-
ber of edges the vertices have to others outside their own commu-
nity. The point zout!8 at the rightmost edge of the plot represents
the point at which vertices have as many connections outside their
own community as inside it. Each data point is an average over 100
graphs.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"
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THE PROBLEMS

Most existing community detection methods:

- are node-based
- attempt to partition the nodes
- look at connectivity within a community. 

This means that they are likely to overlook highly 
overlapping communities, and communities that are 
defined by relationships of one node set to another.  



EDGE-BASED COMMUNITIES

Recent work by Ahn, Bagrow & Lehmann introduced 
link communities to deal with the problem of 
overlapping communities.  

Nature 466, 761-764 (2010)
(figure from paper)
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Their approach is to compare pairs of edges that share 
a node. If the two nodes at the other ends of these 
edges share many neighbours, the edges are similar.
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How do we choose a suitable set of power-edges to 
represent the graph?



COMPRESSIBLE COMPONENTS

Let us compare the original set of edges

with the power-edge:



COMPRESSIBLE COMPONENTS

The information required to describe these is:

I(p)
AB = 2(nA + nB) log2 N

IAB = 2nAnB log2 N

= 24 log2 7

= 14 log2 7

A B

A B



COMPRESSIBLE COMPONENTS

Hence the compression is given by:

�IAB = I(p)
AB � IAB = 2(nAnB � nA � nB) log2 N

= (24� 14) log2 7 = 10 log2 7
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We then maximise this quantity using a greedy algorithm:

1) Rank all possible compressible components in order of 
compressibility.
2) Select most compressible component. 
3) Recalculate compressibilities of all others in light of 
overlaps with selected component.
4) Repeat from step 1) for all compressible components 
apart from selected one(s).



SOCIAL NETWORKS

A classical social network dataset for community 
detection is Zachary’s karate club network. The shown 
communities were calculated by Newman & Girvan.

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world
network data. Our first such example is taken from one of the
classic studies in social network analysis. Over the course of
two years in the early 1970s, Wayne Zachary observed social
interactions between the members of a karate club at an
American university "36#. He constructed networks of ties
between members of the club based on their social interac-
tions both within the club and outside it. By chance, a dis-
pute arose during the course of his study between the club’s
administrator and its principal karate teacher over whether to
raise club fees, and as a result the club eventually split in
two, forming two smaller clubs, centered around the admin-
istrator and the teacher.
In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding
this network into our algorithms, we find the results shown in
Fig. 9. In the leftmost two panels, we show the dendrograms
generated by the shortest-path and random-walk versions of
our algorithm, along with the modularity measures for the
same. As we see, both algorithms give reasonably high val-
ues for the modularity when the network is split into two
communities—around 0.4 in each case—indicating that there
is a strong natural division at this level. What is more, the
divisions in question correspond almost perfectly to the ac-
tual divisions in the club revealed by which group each club
member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those
of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-
fied by the random-walk version—the latter gets a perfect
score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for
the random-walk method, unlike the shortest-path method,
for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and
modularity for an algorithm based on shortest-path between-
ness but without the crucial recalculation step discussed in
Sec. II. As the figure shows, without this step, the algorithm
fails to find the division of the network into the two known
groups. Furthermore, the modularity does not reach nearly
such high values as in the first two panels, indicating that the
divisions suggested are much poorer than in the cases with
the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network
of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct
research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-
phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-
tion of the archive, where, for historical reasons, most papers
on networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing in the
archive. Thus the collaborative ties represented in the figure
are not limited to papers on topics concerning networks—we
were interested primarily in whether people know one an-
other, and collaboration on any topic is a reasonable indica-
tor of acquaintance.
The network as presented in Fig. 10$a! is difficult to in-

terpret. Given the names of the scientists, knowledgeable
readers with too much time on their hands could, no doubt,
pick out known groupings, for instance at particular institu-
tions, from the general confusion. But were this a network
about which we had no a priori knowledge, we would be
hard pressed to understand its underlying structure.
Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-
gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known
groups of scientists in this rendering, and more easily now
with the help of the colors. Still, however, the structure of the
network as a whole and of the interactions between groups is
quite unclear.
In Fig. 10$c!, we have reduced the network to only the

groups. In this panel, we have drawn each group as a circle,
with size varying roughly with the number of individuals in
the group. The lines between groups indicate collaborations
between group members, with the thickness of the lines
varying in proportion to the number of pairs of scientists
who have collaborated. Now the overall structure of the net-
work becomes easy to see. The network is centered around
the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower
right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the
karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded
squares represent individuals who ended up aligning with the club’s
administrator after the fission of the club, open circles those who
aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!
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Figure from M. E. J. Newman & M. Girvan, PRE 69, 026113 (2004)
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What is the meaning of these compressible 
components?

from W. Zachary, J. Anthrop. Res. 33, 452-473 (1977)l

CONFLICT AND FISSION IN SMALL GROUPS 465 

TABLE 1 
RESULTS OF INITIAL NETFLOW RUN 

INDIVIDUAL SIDE OF CUT FACTION CLUB AFTER 
NUMBER FISSION 

1 Source Mr. Hi - Strong Mr. Hi's 
2 Source Mr. Hi - Strong Mr. Hi's 
3 Source Mr. Hi - Strong Mr. Hi's 
4 Source Mr. Hi - Strong Mr. Hi's 
5 Source Mr. Hi - Strong Mr. Hi's 
6 Source Mr. Hi - Strong Mr. Hi's 
7 Source Mr. Hi - Strong Mr. Hi 's 
8 Source Mr. Hi - Strong Mr. Hi's 
9 Sink John - Weak Mr. Hi's 

10 Sink None Officers' 
11 Source Mr. Hi - Strong Mr. Hi's 
12 Source Mr. Hi - Strong Mr. Hi's 
13 Source Mr. Hi - Weak Mr. Hi's 
14 Source Mr. Hi - Weak Mr. Hi's 
15 Sink John - Strong Officers' 
16 Sink John - Weak Officers' 
17 Source None Mr. Hi's 
18 Source Mr. Hi - Weak Mr. Hi's 
19 Sink None Officers' 
20 Source Mr. Hi - Weak Mr. Hi's 
21 Sink John - Strong Officers' 
22 Source Mr. Hi - Weak Mr. Hi's 
23 Sink John - Strong Officers' 
24 Sink John - Weak Officers' 
25 Sink John - Weak Officers' 
26 Sink John - Strong Officers' 
27 Sink John - Strong Officers' 
28 Sink John - Strong Officers' 
29 Sink John - Strong Officers' 
30 Sink John - Strong Officers' 
31 Sink John - Strong Officers' 
32 Sink John - Strong Officers' 
33 Sink John - Strong Officers' 
34 Sink John - Strong Officers' 

This table summarizes the results of the first run of NE TFLO W, using matrices E and 
C as input. "Individual Number" identifies the individual with the corresponding 
row/column in the matrices. "Side of Cut" refers to the subset of V to which the 
individual was assigned by NETFLOW, either the source side or the sink side. "Fac- 
tion" gives the factional affiliation of the individual, either with that of John A., 
that of Mr. Hi, or none. The strong/weak designations in this column indicate 
whether the individual was a strong or a weak supporter of the faction's ideological 
position. Finally, "club after fission" indicates which club was joined after the fis- 
sion, either that formed by Mr. Hi, or that formed by the officers of the original 
club. 

SOCIAL NETWORKS

The two factions 
and their leaders.



What is the meaning of these compressible 
components?

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world
network data. Our first such example is taken from one of the
classic studies in social network analysis. Over the course of
two years in the early 1970s, Wayne Zachary observed social
interactions between the members of a karate club at an
American university "36#. He constructed networks of ties
between members of the club based on their social interac-
tions both within the club and outside it. By chance, a dis-
pute arose during the course of his study between the club’s
administrator and its principal karate teacher over whether to
raise club fees, and as a result the club eventually split in
two, forming two smaller clubs, centered around the admin-
istrator and the teacher.
In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding
this network into our algorithms, we find the results shown in
Fig. 9. In the leftmost two panels, we show the dendrograms
generated by the shortest-path and random-walk versions of
our algorithm, along with the modularity measures for the
same. As we see, both algorithms give reasonably high val-
ues for the modularity when the network is split into two
communities—around 0.4 in each case—indicating that there
is a strong natural division at this level. What is more, the
divisions in question correspond almost perfectly to the ac-
tual divisions in the club revealed by which group each club
member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those
of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-
fied by the random-walk version—the latter gets a perfect
score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for
the random-walk method, unlike the shortest-path method,
for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and
modularity for an algorithm based on shortest-path between-
ness but without the crucial recalculation step discussed in
Sec. II. As the figure shows, without this step, the algorithm
fails to find the division of the network into the two known
groups. Furthermore, the modularity does not reach nearly
such high values as in the first two panels, indicating that the
divisions suggested are much poorer than in the cases with
the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network
of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct
research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-
phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-
tion of the archive, where, for historical reasons, most papers
on networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing in the
archive. Thus the collaborative ties represented in the figure
are not limited to papers on topics concerning networks—we
were interested primarily in whether people know one an-
other, and collaboration on any topic is a reasonable indica-
tor of acquaintance.
The network as presented in Fig. 10$a! is difficult to in-

terpret. Given the names of the scientists, knowledgeable
readers with too much time on their hands could, no doubt,
pick out known groupings, for instance at particular institu-
tions, from the general confusion. But were this a network
about which we had no a priori knowledge, we would be
hard pressed to understand its underlying structure.
Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-
gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known
groups of scientists in this rendering, and more easily now
with the help of the colors. Still, however, the structure of the
network as a whole and of the interactions between groups is
quite unclear.
In Fig. 10$c!, we have reduced the network to only the

groups. In this panel, we have drawn each group as a circle,
with size varying roughly with the number of individuals in
the group. The lines between groups indicate collaborations
between group members, with the thickness of the lines
varying in proportion to the number of pairs of scientists
who have collaborated. Now the overall structure of the net-
work becomes easy to see. The network is centered around
the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower
right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the
karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded
squares represent individuals who ended up aligning with the club’s
administrator after the fission of the club, open circles those who
aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!
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SOCIAL NETWORKS

Figure from M. E. J. Newman & M. Girvan, PRE 69, 026113 (2004)
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and their leaders.
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Here we will show results for 
a food web of 122 species in 
a Florida ecosystem, with 
1767 edges.
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R. E. Ulanowicz, C. Bondavalli, and M. S. Egnotovich, Chesapeake Biological Laboratory, 
Solomons, MD 20688-0038, USA, Ref. No. UMCESCBL 98-123, 1998
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FOOD WEBS

501 edges
28% of network
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calculate the enrichment of these relative to a null 
model. 
The probability of finding term   in set   exactly   times, 
if the term appears     times among all    nodes, is 
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Pi(k⇤, s) = 1�
k⇤�1X

k=0

pi(k, s) P (B)
i (k⇤, s) = TPi(k⇤, s)

i
ni

s k
N

Bonferroni
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RECIPE NETWORK
Food ingredients and recipes form a bipartite network. 
Here we study an example with 415 nodes and 1748 
edges. 
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RECIPE NETWORK
The five most compressible components exhibit highly 
significant enrichment for certain cuisines. The overlap 
between the power nodes shows the proximity of 
cuisines.
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YEAST TRANSCRIPTION

In a yeast transcription network the nodes are 
yeast genes and the edges are regulatory 
interactions between them.  

Our dataset here has 2534 nodes and 6071 edges.

K. D. MacIsaac et al., BMC Bioinformatics 7:113 (2006)



YEAST TRANSCRIPTION
The 5 most compressible components cover 699 
edges (11% of network).
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S. E. Ahnert, Mol Biosyst 9, 2681 (2013)



YEAST TRANSCRIPTION

Note that compressible components 
have no restrictions on the overlaps 
between power nodes belonging to 
the same or different compressible 
components.
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GO TERM ENRICHMENT
In the yeast transcription network 
67% of power nodes exhibit 
Gene Ontology (GO) term 
enrichment. 

Among the top 100 compressible 
components, this rises to 91%.
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GO TERM ENRICHMENT

The most compressible 
component represents regulation 
of the G1/S phase of cell cycle by 
two heterodimers: SBF (Swi4/
Swi6) and MBF (Mbp1/Swi6)
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GO TERM ENRICHMENT

The most compressible 
component represents regulation 
of the G1/S phase of cell cycle by 
two heterodimers: SBF (Swi4/
Swi6) and MBF (Mbp1/Swi6)
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GO TERM ENRICHMENT

The second most compressible 
component represents regulation 
of two developmental processes, 
mating and filamentation, regulated 
by the Ste12/Dig1/Dig2 and 
Tec1/Ste12/Dig1 complexes.
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The second most compressible 
component represents regulation 
of two developmental processes, 
mating and filamentation, regulated 
by the Ste12/Dig1/Dig2 and 
Tec1/Ste12/Dig1 complexes.
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reproduction (2.65E-10)
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chaperonin-containing T-
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...and the third component describes a broad stress response... 

...can also be seen from the p-values of the GO term enrichment.
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The fifth most compressible 
component represents the 
switching between the a and α
mating types of yeast.
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The fifth most compressible 
component represents the 
switching between the a and α
mating types of yeast.

Set A GO terms Set B GO terms
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A notable exception is the 18th compressible component.
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This compressible component represents processes that lead 
to cell death, forming a bottleneck of regulatory information 
as no downstream processing is required - quite literally a 
regulatory dead end. 
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PET9 is well-known to be involved in cell death (apoptosis). 
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PET9 is well-known to be involved in cell death (apoptosis). 

YBL029W has been speculatively linked to apoptosis as 
one of several genes that are over-expressed in apoptotic 
temperature-sensitive yeast cells.
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PET9 is well-known to be involved in cell death (apoptosis). 

YBL029W has been speculatively linked to apoptosis as 
one of several genes that are over-expressed in apoptotic 
temperature-sensitive yeast cells.

YBL029C-A has never been linked to apoptosis. Its 
membership in this set suggests that it might be.
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E. COLI TRANSCRIPTION NETWORK

Another widely-studied transcription network is that of 
the bacterium E. coli.  The one we use here has 889 nodes 
and 1465 edges.

In E. coli many of the genes are organised into overlapping 
DNA regions, known as operons. These groups of genes 
correspond to functional modules. 



E. COLI TRANSCRIPTION NETWORK

Another widely-studied transcription network is that of 
the bacterium E. coli.  The one we use here has 889 nodes 
and 1465 edges.

In E. coli many of the genes are organised into overlapping 
DNA regions, known as operons. These groups of genes 
correspond to functional modules. 

M. M. Babu, S. A. Teichmann, Nucl. Acids Res. (2003) 31 (4): 1234-1244.



E. COLI TRANSCRIPTION NETWORK

The compressible components 
of the E. coli network show the 
organisation of the genes in 
terms of operons. 

The operons are controlled 
combinatorially by a handful of 
key regulatory genes.
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In the 20 most compressible 
components (pictured), 70% 
of power nodes exhibited 
significant GO term 
enrichment. 
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The overlaps between the 
compressible components 
highlight combinatorial 
regulation patterns. 

For instance we can see 
that the nuo, suc, sdh, and glp 
operons are all regulated by 
different combinations of 
sets of regulators, or
regulatory modules.
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We can also see that 
crp acts together with 

many other genes 
separately to regulate 

a large number of 
operons.

crp appears in 29 of 62 
ompressible components. 
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What role do compressible components play in terms 
of global efficiency?

GLOBAL EFFICIENCY

Global efficiency of a network is defined as the inverse 
of the harmonic mean of the shortest path length 
across all possible node pairs in the network.

E
global

=
1

N(N � 1)

X

i,j

1
L

ij



GLOBAL EFFICIENCY

If we remove compressible components, the global 
efficiency is almost always reduced more than for an 
equally sized set of randomly chosen edges.
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FUTURE DIRECTIONS



FUTURE DIRECTIONS

One possible future direction would be to introduce 
the possibility of imperfect power edges, in which the 
compression information would include small numbers 
of edges that are missing from an even more 
compressible component.

Another would be to construct inference approaches 
which allow the classification of unknown nodes based 
on term enrichment and their membership in 
compressible components.



CONCLUSIONS

Compressible components provide a way to identify and 
visualise dominant connection structures in networks.

This allows the identification of node sets that are 
defined by their relationships with other node sets, 
rather than internal connectivity of sets.

The potentially highly overlapping node sets that emerge 
from this approach can be classified using term 
enrichment analysis. 



CONCLUSIONS



CONCLUSIONS

In transcription networks this approach identifies sets of 
genes that regulate other sets of genes in combination. 

GO term enrichment can be used to assign biological 
meaning to these overlapping sets.

The partial overlaps of power nodes are a crucial 
characteristic for the description of transcription networks. 
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A more general publication is currently under review.
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